Namaste

Namaste

Jonathan J. Crabtree, Elementary Mathematics Historian, Australia With grateful appreciation to Dr. Inder K. Rana.

PART 1. Why India Must Change its Story Bad Maths History \Rightarrow Sad Maths Misery

PART 2. Negative \& Positive Quantities on a Brahmaguptan Plane for India's Primary Classes

PART 1. Why India Must Change its Story Bad Maths History = Sad Maths Misery

Jonathan J. Crabtree, Elementary Mathematics Historian, Australia. 9th National conference: Technology \& Innovations in Math Education Biennial Conference of the Mathematics Department of the IIT Bombay. Jointly organized by IISER, Pune \& BATU, Lonere.

Pune India, 27 ${ }^{\text {th }}$ December 2019

I couldn't make much sense of what I was being taught. So I felt stupid.

I couldn't make much sense of what I was being taught. So I felt stupid.

"Don't worry

about it, Jonathan.

I couldn't make much sense of what I was being taught. So I felt stupid.

Mathematics is only
confusing if you think about it."

So, in 1983 I made a decision to change primary and middle school mathematics explanations.

So, in 1983 I made a decision to change primary and middle school mathematics explanations. Maths? It's all in the
mind, says Jonathan

JONATHAN throws away his calculator and uses brain powers to solve even the hardest of equations.
IF you were asked what day it was
on July 24, 1706, what would you say?
sald. worid teaches maths," Jonathon
Ater a four second calculation he at the Park Orchards Community
came up with the correct day Centre.

So, in 1983 I made a decision to change primary and middle school mathematics explanations. Maths? It's all in the mind, says Jonathan

"I hope to change the way the Western world teaches maths," Jonathon said.

The multiplication explanation my teacher Miss Collins gave had been wrong for 398 years.

At age seven in Class 2, I pulled on a loose thread.
The multiplication explanation my teacher Miss Collins gave had been wrong for 398 years.

So, that classroom confusion in 1968 led to a peer-reviewed paper.

The Lost Logic Of Elementary Mathematics And The Haberdasher Who Kidnapped Kaizen

Jonathan Crabtree Download the paper @ www.bit.ly/LostLogicOfMath

www.jonathancrabtree.com | Mathematics Historian

Euclid's multiplication definition from Elements, (c. 300 BCE), continues to shape mathematics education today. Yet, upon translation into English in 1570 a 'bug' was created that slowly evolved into a 'virus'. Input two numbers into Euclid's step-by-step definition and it outputs an error. Our multiplication definition, thought to be Euclid's, is in fact that of London haberdasher, Henry Billingsley who in effect kidnapped kaizen, the process of continuous improvement. With our centuries-old multiplication definition revealed to be false, further curricular and pedagogical research will be required. In accordance with the Scientific Method, the Elements of western mathematics education must now be rebuilt upon firmer foundations.

At age seven in Class 2, I pulled on a loose thread.
The multiplication explanation my teacher Miss Collins gave had been wrong for 398 years.

So, that classroom confusion in 1968 led to a peer-reviewed paper.

The more I pulled on loose threads, the more mathematics education unraveled.

INDIA WE HAVE A PROBLEM

Many Dislike or Fear Your Maths

INDIA WE HAVE A PROBLEM

Many Dislike or Fear Your Maths What happened?

You cant cross the sea merely by standing and staring at the water.

 Rabindranath TagoreI must travel to find out if there is demand for India's original and true foundations of mathematics.

$$
\begin{aligned}
& \text { You can cross the sea } \\
& \text { merely by standing and } \\
& \text { staring at the water. }
\end{aligned}
$$ Rabindranath Tagore

रिलांच ऑफ इंडियन मैथमेटिक्स पर संगोष्ठी
 सेवनम की अ्रतुणा में श्रनिया को

ভীতি কাটাতে শহরে গপিতষ্ঞ

$$
\Gamma \Gamma\left\langle\Gamma_{0}\right| 1 \mid=
$$

 রাজ্জোর প্রতিটি স্কুলে বিনামূল্যে সহজ গণিত শিক্ষার বই দিতে চান অস্ট্র্র্লিয়ার গণিতভ্ঞ

 গাণिতিক ফর্মুলা চালু হয়েছে বিশ্বের যাটটি দেশে। কন্লকাতায় অর্নুষ্ঠিত হচ্ছে দেলের সবচেয়ে বড় গণিতলেলা। জোনাথন শেখাবেন সহজ গণনা পদ্ধতি

১ থেকে ৫ গুনতে জানলেই জটিল অঙ্ক হবে সহজ, কাটবে ভীতি

 लिभ| সন্রकात्र

"Brahmagupta's 18 laws of mathematics are completely missing from India's present mathematics curriculum."

4Jozethas S. Crabaves
O Whis ea mien abo yon teal mat three ware unne

Arithmetic?

Basic Operations (+, -, x, \div) on

Arithmetic?

Basic Operations (+,,$- \times, \div$) on

 ... -3 -2 -1 0 +1 +2 +3...
Obviously, India's ancient

 integer logic got to us today.
Obviously, India's ancient

 integer logic got to us today.
But how?

What FACTS do we know?

What FACTS do we know?

India's definition of zero as a number and Integer arithmetic was embraced by the Arabic world HAN

What FACTS do we know?

India's definition of zero as a number and Integer arithmetic was embraced by the Arabic world HAN

Al-Khwārizmī wrote a book on Hindu Integer arithmetic which featured Brahmagupta's ancient laws of sign for negatives and positives

What FACTS do we know?

> India's definition of zero as a number and Integer arithmetic was embraced by the Arabic world HAN

Al-Khwārizmī wrote a book on Hindu Integer arithmetic which featured Brahmagupta's ancient laws of sign for negatives and positives

Based on what he learned from the Indians, al-Khwārizmī then wrote a book on algebra

Al-Khwārizmī's algebra text c. 820 CE

- لكتاب المختصر في حساب الجبر والمقابلة
- Al-Kitāb al-mukhtasar fī hisāb al-jabr wa'l-muqābala
- The Compendious Book on Calculation by Completion and Balancing.

What FACTS do we know?

Arabic writers understood negative terms. E.g.

In mathematical language, the verb [jabr] means... ... to transpose negative quantities to the opposite side by changing their signs. The negative quantity thus removed...

Rosen 1831: p. 178

What FACTS do we know?

Arabic writers understood negative terms. E.g.

The usual meaning of jabr in mathematical treatises is: adding equal terms to both sides of an equation in order to eliminate negative terms.

Van der Waerden 1985: p. 4

What FACTS do we know?

Arabic writers understood negative terms. E.g.

Al-jabr means "restoration" or "completion", that is, removing negative terms, by transposing them to the other side of the equation to make them positive

Devlin 2012: p. 53

What FACTS do we know?

From the Arabic world, India's mathematical foundations made their way to North Africa where Leonardo Pisano (AKA Fibonacci) mastered them

What FACTS do we know?

From the Arabic world, India's mathematical foundations made their way to North Africa where Leonardo Pisano (AKA Fibonacci) mastered them

Leonardo Pisano then documented India's mathematical foundations involving Brahmagupta's definition of zero as a number

What FACTS do we know?

From the Arabic world, India's mathematical foundations made their way to North Africa where Leonardo Pisano (AKA Fibonacci) mastered them

Leonardo Pisano then documented India's mathematical foundations involving Brahmagupta's definition of zero as a number

Thus, Europe came to understand Indian arithmetic

H\&®

India $7^{\text {th }}$ century

The Transmission of India's Integer Arithmetic

- India . Arabic World $7^{\text {th }}$ century $\quad 9^{\text {th }}$ century

Shadings for illustrative purposes only ${ }^{\text {© } 2019 \text { J. J. Crabtree | All Rights Reserved }}$
www.jonathancrabtree.com

The Transmission of India's Integer Arithmetic

India \quad Arabic World
$7^{\text {th }}$ century $9^{\text {th }}$ century Europe $\quad 13^{\text {th }}$ century

Shadings for illustrative purposes only ${ }^{\text {© } 2019 \text { J. J. Crabtree | All Rights Reserved }}$
www.jonathancrabtree.com

What FACTS do we teach?

Zero is defined as $\boldsymbol{n} \boldsymbol{n} \boldsymbol{n}$

What FACTS do we teach?

Zero is defined as $n-n$

Negative numbers are less than zero

What FACTS do we teach?

Zero is defined as $n-n$

Negative numbers are less than zero
Negative seven is less than negative four $-7<-4$

What FACTS do we know?

Zero is defined as $n-n$

Negative numbers are less than zero
Negative seven is less than negative four $-7<-4$
Every basic arithmetical operation (+,,$- \times, \div$) on the Integers is understood and has been for centuries

What FACTS do we teach?

Euclid in his book Elements defined multiplication as repeated addition

What FACTS do we teach?

Euclid in his book Elements defined multiplication as repeated addition

$\boldsymbol{a} \boldsymbol{b}$ is thus defined as \boldsymbol{a} added to itself \boldsymbol{b} times

What FACTS do we teach?

Euclid in his book Elements defined multiplication as repeated addition
$a b$ is thus defined as a added to itself b times
$\boldsymbol{a}^{\boldsymbol{b}}$ is thus defined as \boldsymbol{a} into itself \boldsymbol{b} times

What we know about arithmetic isn't true!

What we know about arithmetic isn't true! Every previous 'FACT' is FALSE!

Bad Maths History

Bad Maths History

Sad Maths Misery

© 2019 J. J. Crabtree | All Rights Reserved www.jonathancrabtree.com

Indian students rank 2nd last in global test

TNN I Jan 15, 2012, 02.24 AM IST

[^0]MUMBAI: Across the world, India is seen as an education powerhouse based largely on the reputation of a few islands of academic excellence such as the IITs. But scratch the glossy surface of our education system and the picture turns seriously bleak.

Fifteen-year-old Indians who were put, for the first time, on a global stage stood second to last, only beating Kyrgyzstan when tested on their reading, math and science abilities.

India ranked second last among the 73 countries that participated in the Programme for International Student Assessment (PISA), conducted annually to evaluate education systems worldwide by the OECD (Organisation for Economic Co-operation and Development) Secretariat. The survey is based on two-hour tests that half a million students are put

through.

Tamil Nadu and Himachal, showpieces of India's education and development, fared miserably at the Programme for International Student Asssment, conducted by the Organisation for Economic Co-operation and Development Secretariat.

In math, considered India's strong point, they finished second and third to last, beating only Kyrgyzstan

Bad Maths History

Sad Maths Misery

Everyone is entitled to their own opinion, yet not to their own facts.

Extraordinary Claims

-India's definition of ZERO never made it to either the ancient Arabic world or Europe.

Extraordinary Claims

- India's definition of ZERO never made it to either the ancient Arabic world or Europe.
- In the Arabic world, India's ZERO only came to exist as a placeholder, not as the power tool to solve simple problems like +3 minus +4 , or -2 minus -4 , or -4 minus +2

Extraordinary Claims

- India's definition of ZERO never made it to either the ancient Arabic world or Europe.
-In the Arabic world, India's ZERO only came to exist as a placeholder, not as the power tool to solve simple problems like
+3 minus +4, or -2 minus -4, or -4 minus +2

Extraordinary Evidence...

Astronomer and Mathematician

Brāhmasphuṭasiddhānta 628 CE

For this talk, Brahmagupta's

 Laws of Positives Negatives and Zero have been freshly analysed. Images courtesy of the British Library.ब्राह्मस्फुटसिद्धान्तो धानगहेपपदेशाध्यायश्च। गबकचकचूडामएएश्रीब्रह्मगुप्रविरचितः। मह्यामहेगपाध्यायसुधाकरद्विवेदिकृतनूतन्:तिलकसमेतः।

BRĀHMASPHUṬASIDDHĀNTA AND
DHYĀNAGRAHOPADEṢĀDHYĀYA, BY BRAHMAGUPTA,
EDITED WITH HIS OWN COMMENTARY
BY
MAHĀMAHOPĀDHYĀYA SUDHĀKARA DVIVEDIN,
Profesoor, Queen's College, Benares.

BENARES:
pRinted 4 T the medical hall press.

Brahmagupta's 5 Addition Laws

AL
 (sañkalana)

Brahmagupta's 5 Addition Laws

 positive plus positive is positiveA12negative plus negative is negative positive plus negative is the difference between the positive and negative

AL4when positive and negative are equal the sum is zero positive plus zero is positive negative plus zero is negative
zero plus zero is zero

Brahmagupta's 5 Addition Laws

AL1 positive plus positive is positive

R12

negative plus negative is negative

12
positive plus negative is the difference between the positive and negative

AL4
when positive and negative are equal the sum is zero
positive plus zero is positive

1.5negative plus zero is negative
zero

Brahmagupta's 5 Addition Laws

negative plus negative is negative

18
positive plus negative is the difference between the positive and negative

R4
when positive and negative are equal the sum is zero
positive plus zero is positive

115
negative plus zero is negative
zero
plus zero is zero

Al-Khwārizmī (c. 780-850)

I had seen that the Indians had set up 9 symbols in their universal system of numbering...

Al-Khwārizmī (c. 780-850)

So they made $\mathbf{9}$ symbols, which are these: 987654321.

And ... every number is put together above one.

Al-Khwärizmï did not

 mention zero"Algorizmi said: since I had seen that the Indians had set up IX symbols Crossley, John N, and Henry, Alan S. (1990) Thus Spake Al-Khwārizmī: A Translation of the Text of Cambridge University Library Ms. Ii. Vi. 5. Historia Mathematica. P. 110-111

Al-Khwārizmī (c. 780-850)

 ... one is the root of all number and is outside number.Al-Khwärizmï did not mention zero and did not consider one a number.

It is the root of number because every number is found by it.

But it [one] is outside number because it is found by itself, I mean, without any other number.

Al-Uqlidisi (c. 920-980)

Al-Uqlidisi considered zero a placeholder, not a number.

Al-Uqlidisi considered zero an empty placeholder, not a number.

Al-Uqlidisi (c. 920-980)

One question is: Why are the Hindi letters nine, no more, no less? We say: Because the beginning of numbers from which they start is one and the last unit we pronounce is nine. Thus when we say units we mean something between one and nine; after that units are over, and ten comes out like one and takes its form. We add up ten to ten until we reach 90 which conforms with nine. Tens are now over and we say one hundred, coming back to one, and going up to 9. Thus we see that all places start with one and end with nine. That is why they are made nine. So much for the nine letters. If it is said: Why is zero multiplied by zero equal to zero and zero multiplied by any letter zero? We say that by multiplying zero by zero the aim is only to occupy the place; the same applies for multiplying the letter by zero. We multiply the letter by zero only once, the first time, by the first letter in the upper, to occupy the place, and tell that there is a place and that it is empty.

Saidan, Ahmad S. (1978) The Arithmetic of Al-Uqlídisí: The Story of Hindu-Arabic Arithmetic As Told in Kitab Al-Fusul Fi Al-Hisab Al-Hindi. Reidel, Dordrecht. P. 186

200 years after Brahmagupta, al-Khwārizmī did not accept 1 as a number. Zero as a number? Never!

200 years after Brahmagupta, al-Khwārizmī did not accept 1 as a number. Zero as a number? Never!

300 years after Brahmagupta, al-Uqlīdisī accepted India's ZERO as a placeholder, yet not a number. Why?

Al-Uqlīdisī means 'the Euclidist'. He was known for his skill in studying the Greek geometry of Euclid and translating it into Arabic.

Al-Uqlīdisī means 'the Euclidist'. He was known for his skill in studying the Greek geometry of Euclid and translating it into Arabic.

Around 300 BCE, Euclid defined 'number' as a multitude of units. So Euclid's definition of number came before 0 and 1 were numbers.

India defined zero as the sum of opposing negative and positive numbers or quantities with the same multitude or magnitude.

 negative and positive numbers / quantities with the same multitude or magnitude.If Arabic and European writers in medieval times really understood India's zero, where are all the negative numbers in their writings?
"I have read a few dozen medieval Arabic books on arithmetic and algebra, and there is no hint of negative numbers in any of them. Zero, too, was not regarded to be a number, but was merely the place holder for an empty place in the representation of a number in Arabic (Indian) notation."

By email courtesy of Dr. Jeffrey Oaks, Professor of Mathematics Medieval Arabic algebra and the mathematics of Greece and medieval Europe UINDY
"I have read a few dozen medieval Arabic books on arithmetic and algebra, and there is no hint of negative numbers in any of them. Zero, too, was not regarded to be a number, but was merely the place holder for an empty place in the representation of a number in Arabic (Indian) notation."
"All numbers in Arabic arithmetic were positive. No Arabic author to my knowledge ever even contemplated the existence of negative numbers."

By email courtesy of Dr. Jeffrey Oaks, Professor of Mathematics Medieval Arabic algebra and the mathematics of Greece and medieval Europe UINDY

The maths MYTHS we know

India's definition of zero as a number that was a sum of equal, yet opposite negative and positive quantities was [NOT] embraced by the Arabic world

The maths MYTHS we know

India's definition of zero as a number that was a sum of equal, yet opposite negative and positive quantities was [NOT] embraced by the Arabic world

Al-Khwārizmī wrote a book on Hindu Integer arithmetic which [DID NOT] feature Brahmagupta's ancient laws of sign for negatives and positives

The maths MYTHS we know

Based on what he learned and documented in his book Algoritmi de numero Indorum (al-Khwārizmī on the Hindu Art of Reckoning) he then wrote a book on algebra [NO]

Al-Khwārizmī wrote his book on algebra BEFORE he understood Indian mathematics.

The maths MYTHS we know

Al-Khwārizmī did NOT remove negative terms from his equations.

The maths MYTHS we know

Al-Khwārizmī did NOT remove negative terms from his equations.

Al-Khwārizmī simply eliminated any positive term that was being subtracted in an equation.

The maths MYTHS we know

Al-Khwārizmī did NOT remove negative terms from

 his equations.Al-Khwārizmī simply eliminated any positive term that was being subtracted in an equation.

For example, $a x^{2}=b x-c$ became $a x^{2}+c=b x$.

The maths MYTHS we know

Comparing al-Khwārizmī's approach to Brahmagupta's, Rashed, Roshdi. (2009) The Beginnings of Algebra. Saqi, London.

The maths MYTHS we know

Comparing al-Khwārizmī's approach to Brahmagupta's Rashed, Roshdi. (2009) The Beginnings of Algebra. Saqi, London.
"Once again al-Khwārizmī differs from Brahmagupta, this time in not employing any abbreviation.

The maths MYTHS we know

Comparing al-Khwārizmī's approach to Brahmagupta's Rashed, Roshdi. (2009) The Beginnings of Algebra. Saqi, London.

Al-Khwārizmī... avoids using "negative" numbers or simply a [larger] number subtracted from a smaller one, or from zero, whereas Brahmagupta, like other Indian mathematicians before him, does not hesitate to make use of such [negative] numbers."

The maths MYTHS we know

"It is difficult to imagine that al-Khwārizmī, if he had read this chapter [i.e. chapter 18 of Brahmagupta's Brāhma Sphutasiddhānta] would not have been able to profit by it, even if only to shorten the presentation of his work."

The maths MYTHS we know

"It is difficult to imagine that al-Khwārizmi, if he had read this chapter [i.e. chapter 18 of Brahmagupta's Brāhma Sphutasiddhānta] would not have been able to profit by it, even if only to shorten the presentation of his work.'
"The style of the mathematical reasoning that is at work in al-Khwārizmī's algebra has nothing to do with what we encounter in the work of his (Indian) predecessors."

628 CE
 Brahmagupta had everything we need today!

628 CE
 Brahmagupta had everything we need today!

830 CE
Al-Khwārizmī did not have 1 as a number.

628 CE
 Brahmagupta had everything we need today!

830 CE
Al-Khwārizmī did not have 1 as a number.

950 CE
Al-Uqlīdisī only had 0 as a placeholder

628 CE

Brahmagupta

 had everything we need today!

830CE Al-Khwārizmī did not have 1 as a number.

Leonardo Pisano 1170-1250

628 CE

Brahmagupta

 had everything we need today!830CE

I am Leonardo Pisano. I am the man most responsible for introducing India's arithmetic into Europe in the $13^{\text {th }}$ Century via my book Liber Abaci.

628 CE

Brahmagupta

 had everything we need today!830CE Al-Khwārizmī did not have 1 as a number.

As I got my Indian info via Arabic traders, I did NOT get to learn about India's definition of zero as a number or the rules of positive and negatives.

628 CE

Brahmagupta

 had everything we need today!830CE
Al-Khwārizmī did not have 1 as a number.

As I got my Indian info via Arabic traders, I did NOT get to learn about India's definition of zero as a number or the rules of positive and negatives. Whoops!
© 2019 J. J. Crabtree | www.jonathancrabtree.com www.j.mp/IndiasMaths

In 1478 the first book printed on maths (Treviso Arithmetic) said numbers start at 2.

So much for 0 and 1 which is all your computer needs!

www.j.mp/IndiasMaths

In 16th Century England people used Roman Numerals and there was

 no Roman Numeral for 0.Copyright © 2019 All Rights Reserved Jonathan J. Crabtree

The maths at the time was based on Ancient Greek maths which did not have zero, one or negative numbers.

The false idea negative quantities are less than zero (rather than opposite in nature to positive quantities) emerged in Michael Stiefel's Arithmetica Integra of 1544 in a section titled De signis additorum \& subtractorum \& de numeris absurdis.

Michael Stiefel said negative

To make sense of numbers that count or measure negative quantities, (i.e. negative numbers) all we need to do is drop the nonsense notion that negative quantities are 'less than zero'.

Then negative numbers simply count or measure opposite quantities or forces, which are always greater than zero!

Perhaps you might recall Newton's Third Law which states for every action there is an equal and opposite reaction. Bingo!

Newton's Laws of Motion are consistent with Brahmagupta's laws of quantitative mathematics, which are also consistent with quantum physics.

Think about it... 3 negative electrons and 3 positive positrons cancel each other out to sum to zero.

As maths books got published in the English language, (without 0 or 1 in algorithmic definitions or as numbers) they were exported to England's settlements and colonies (e.g. New England became America).

So as the English language spread, so too did major misunderstandings of India's mathematical foundations!

In 628 Brahmagupta gave solutions to equations we'd write today as $x^{2}-92 y^{2}=1 *$ and $a x^{2}+b x+c=0$.

In 628 Brahmagupta gave solutions to equations we'd write today as $x^{2}-92 y^{2}=1$ * ($x=1151$ and $y=120$)

However, the first person to say 1 was a number in the West was Simon Stevin in 1585, almost 1000 years after Brahmagupta!

However, the first person to say 1 was a number in the West was Simon Stevin in 1585, almost 1000 years after Brahmagupta! So, where is zero today?

Patna Science College, Patna University, Bihar India
Elementary Mathematics Historian, Melbourne, Australlo

- research lonathancrabtreacom

What FABIS do we Kreme?
What ERCIS do we Mrme?

© 2019 J. J. Crabtree | All Rights Reserved
oshin

Brahmagupta's 5 Addition Laws

 AL1 positive plus positive is positiveAl2negative plus negative is negative positive plus negative is the difference between the positive and negative

nIAwhen positive and negative are equal the sum is zero positive plus zero is positive negative plus zero is negative
zero plus zero is zero

Brahmagupta's 5 Subtraction Laws

 A smaller positive subtracted from a larger positive is positive.A smaller negative subtracted from a larger negative is negative. If a larger negative or positive is to be subtracted from a smaller negative or positive, the sign of their difference is reversed negative becomes positive and positive negative.

A negative minus zero is negative, a positive minus zero is positive, zero minus zero is zero.
When a positive is to be subtracted from a negative or a negative from a positive, then it is to be added.

Brahmagupta's 4 Multiplication Laws

ML1 The product of a negative and a positive is negative.
M2 The product of two negatives is positive.
WIS The product of two positives is positive.
The product of zero and a negative,

MLL ofzero and a positive, or of two zeros is zero.

Brahmagupta's 4 Division Laws

DL1 A positive divided by a positive is positive.
D12 A negative divided by a negative is positive.
D 3 A positive divided by a negative is negative.
D14 A negative divided by a positive is negative.

Acknowledgement: I am grateful to Avinash Sathaye, K. Ramasubramanian, Clemency Montelle, Kim Plofker and Agathe Keller. Analysis, interpretation (\& any mistakes) by Jonathan J. Crabtree.

Brahmagupta's 5 Addition Laws AL1 positive plus positive is positive
negative plus negative is negative
positive plus negative is the difference between the positive and negative
AL4 when positive and negative are equal the sum is zero
positive plus zero is positive
AL5 negative plus zero is negative
zero plus zero is zero

Brahmagupta's 4 Multiplication Laws

ML1 The product of a negative and a positive is negative.
M12 The product of two negatives is positive.
M13 The product of two positives is positive.
The product of zero and a negative,
of zero and a positive, or
of
two zeros is zero.
© 2019 J. J. Crabtree | All Rights Reserved www.jonathancrabtree.com

Brahmagupta's 5 Subtraction Laws
A smaller positive subtracted from a larger positive is positive.

If a larger negative or positive is to be subtracted from a smaller negative or positive, the sign of their difference is reversed negative becomes positive and positive negative.

A negative minus zero is negative,
a positive minus zero is positive,
zero minus zero is zero.
SL5
When a positive is to be subtracted from a negative
or a negative from a positive, then it is to be added.

Brahmagupta's 4 Division Laws

A positive divided by a positive is positive.
A negative divided by a negative is positive.

A positive divided by a negative is negative.
A negative divided by a positive is negative.

[^1]When positive and negative are equal the sum is zero

When positive and negative are equal the sum is zero Correct according to the laws of physics, yet NOT what we are taught in school!

When positive and negative are equal the sum is zero

Correct according to the laws of physies, yet NOT what we are taught in school!

Negative Integers are less than Positive Integers.

| -10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | The more left you go, the smaller the number. NO!

When positive and negative are equal the sum is zero

Correct according to the laws of physics, yet NOT what we are taught in school!

Negative Integers are less than Positive Integers.

| -10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | The more left you go, the smaller the number. NO!

Maths pedagogies were developed on Naturals \mathbb{N} then extended via subtraction to form Integers \mathbb{Z}
11111 minus $1 \quad$ + 4 equals 1111
11111 minus 11 +3 equals 111
11111 minus 1111 +2 equals 11
11111 minus 11111 +1 equals 1
11111 minus 11111
0 equals

The West wrongly extended the Naturals pattern onto the Integers.
"when the number of positive and negative quantities are equal the sum is zero"

© 2019 Jonathan J. Crabtree

Seeing Simple Symmetries of Quantity

Counts or measures of negative units

Counts or measures of positive units

Electrons South West Left Down Debts Loss Deaths Emigration Cold Decay Below Zero Less Than Enough Below Ground To the hour Deceleration Head Wind (knots) Under Par (golf)

Positrons North East Right Up Assets Profit Births Immigration Heat Growth Above Zero More Than Enough Above Ground Past the hour Acceleration Tail Wind (knots) Over Par (golf)

Brahmagupta's 5 Subtraction Laws

-1 A smaller positive subtracted from a larger positive is positive.

$$
+9-+2=+7
$$

A smaller negative subtracted from a larger negative is negative.
If a larger negative or positive is to be subtracted from a smaller negative or positive, the sign of their difference is reversed negative becomes positive and positive negative.
A negative minus zero is negative, a positive minus zero is positive, zero minus zero is zero.
When a positive is to be subtracted from a negative or a negative from a positive, then it is to be added.

Brahmagupta's 5 Subtra 'on Laws

A smaller positive subtracted from a larger positiv

A smaller negative subtracted from a larger negative
If a larger negative or positive is to be
negative or positive, the sign of their negative becomes positive and positi

A negative minus zero is negative, a positive minus zero is positive, zero minus zero is zero.
When a positive is to be subtracted from a or a negative from a positive, then it is to be å

A smaller positive subtracted from a larger positive is positive.
A smaller negative subtracted from a larger negative is negative

$$
-8--5=-3
$$

If a larger negative or positive is to be subtracted from a smaller
negative or positive, the sign of their difference is reversed negative becomes positive and positive negative.

A negative minus zero is negative, a positive minus zero is positive, zero minus zero is zero.
When a positive is to be subtracted from a negative or a negative from a positive, then it is to be added.

Brahmagupta's 5 Subtraction Laws

A smaller positive subtracted from a larger positive is positive.
A smaller negative subtracted from a larger negative is negative.

If a larger negative or positive is to be subtracted from a smaller negative or positive, the sign of their difference is reversed negative becomes positive and positive negative.

$$
\begin{aligned}
& -3-7=+4 \\
& \text { Larger }
\end{aligned}
$$

A negative minus zero is negative, a positive minus zero is positive, zero minus zero is zero.
When a positive is to be subtracted from a negative or a negative from a positive, then it is to be added.

Brahmagr

8	A smaller
8	A small

S.1 A smaller

 SL2A small
If a lar
negati negati

A negal © 1 a positiv
zero
or a negative fi

Seeing Maths with Indian Eyes

 Which numbers are greater?

■ or ■an

Seeing Maths with Indian Eyes

Which numbers are greater?

(in)or

5004

510

Seeing Maths with Indian Eyes

Which numbers are greater? onve semento cantere

$$
5^{-}<7^{+}
$$

$$
9^{-}>4^{+}
$$

2

$1^{-}<3^{+}$

5- 米 5^{+}

JJC ASSESSMENT OF THE WORLD'S PEDAGOGICAL EVOLUTION (628 to Now)

| ${ }^{+} 12+{ }^{+} 4$ | ${ }^{+} 12+{ }^{-} 4$ | ${ }^{-} 12+{ }^{+} 4$ | ${ }^{-} 12+{ }^{-} 4$ |
| :---: | :---: | :---: | ---: | ---: |
| ${ }^{+} 12-{ }^{+} 4$ | ${ }^{+} 12-{ }^{-} 4$ | $-12-{ }^{+} 4$ | ${ }^{-} 12-{ }^{-} 4$ |
| ${ }^{+} 12 \times{ }^{+} 4$ | ${ }^{+} 12 \times{ }^{-} 4$ | $-12 \times{ }^{+} 4$ | ${ }^{-} 12 \times{ }^{-} 4$ |
| ${ }^{+} 12 \div{ }^{+} 4$ | ${ }^{+} 12 \div{ }^{+} 4$ | $-12 \div{ }^{+} 4$ | ${ }^{-} 12 \div{ }^{-} 4$ |
| | PASS | FAIL | Absent |

© 2019 J. J. Crabtree | www.jonathancrabtree.com

Podometic ${ }^{\text {TM }}$ set to replace Arithmetic Dec. 2020

${ }^{+} 12+{ }^{+} 4$	${ }^{+} 12+{ }^{-} 4$	${ }^{-} 12+{ }^{+} 4$	$12+-4$
${ }^{+} 12-{ }^{+} 4$	${ }^{+} 12-{ }^{-1}$	${ }^{-12-+4}$	$12-{ }^{-4}$
${ }^{+} 12 \times{ }^{+} 4$	${ }^{+} 12 \times{ }^{-4}$	${ }^{-12} \times{ }^{+} 4$	$-12 \times{ }^{-} 4$
${ }^{+} 12 \div{ }^{+} 4$	${ }^{+} 12 \div-4$	${ }^{-12} \div{ }^{+} 4$	${ }^{-12} \div{ }^{-1} 4$
	PASS	FAIL	Absent

© 2019 J. J. Crabtree | www.jonathancrabtree.com

Podometic ${ }^{T M}$ set to replace Arithmetic Dec. 2020 with Free maths eBooks for every Indian child

© 2019 J. J. Crabtree | www.jonathancrabtree.com

Hey kids, play with me and l'll make maths fun fast and free to learn!

Hey kids, play with me and I'II make maths fun fast and free to learn!
From Class 1 on, it all connects with the laws of physics as well!

Separate, or altogether, all my bricks and holes give me zero!

I'm Podo the Puppy. All my maths adventures are being brought to life by AFX Animation in Kolkata. www.afxanimation.com

The hard work has been done!

 India can update its
maths and prosper

 or let this major maths education advantage pass by.KEEP
DELHI
CLEAN

Big Problems

Demand We

Think

bigger

Local Legends

anorav matilison

BURIED among the hundreds of every day emuils in Jonathan Crabtree's inbax are a fow worth locoping Ruplies from Nelsion Mandela, Bishop Desmond Tumb, the Dalal Lama, even Mnhammal All ase quickly printed out and put aside for safe koesping.

They ard af reminder of the power bechind the written waid ; than ordinary people can makle a differmee.

II haven'l got one from the Piesident of the Unifed States or the Pope yet," Jonathan saym, "bout P'II get there seon.

The emaits are not really that important - ir's mach mpore aboun the ifleus."

Brain powers Jonathan Grabtree has endless ideas for making the world a better place.
truck trying to beat a red light 25 years ngo nearly Ieft him deod an the road atter colliding with his motarcyele.
Lying motionless on the ground, Jomathan coutt enly remember the horizon spinning arcund as if he were in a plane going down.

Conecquently, the driver lost his livenos but the
despite no formal qualifications, took up teacking nathemstics from hoome.
"I actually fuiled maths," he langhs.
Throwing away the classroom text books. Jorathin taughe lidis to inagine algeven by closing their eyes and liswoning to filingaler.

Science

India's teachers so seldom know
The trees of knowledge from seeds they sow
Past lives forgotten and the future a mystery
Making lives count, their deeds have made history

A Seed to a View by Jonathan J. Crabtree

So make your life count with love as your measure Then kids will climb trees with views they will treasure.

Thank you!

If You Care Please Share

 www.j.mp/IndiasMaths
Thaink Yout
 Please email me your feedbark research@jonathancrabtree.com

Jonathan J. Crabtree

Elementary Mathematics Historian, Melbourne, Australia research@jonathancrabtree.com
© 2019 Jonathan J. Crabtree

PISA Mathematics Survey?

(Programme for International Student Assessment)

In Tamil Nadu and Himachal Pradesh 15\% and 12\% of students are ready to use mathematics in ways that are considered fundamental for their future development.

PISA Mathematics Survey?

(Programme for International Student Assessment)
In Tamil Nadu and Himachal Pradesh 15\% and 12\% of students are ready to use mathematics in ways that are considered fundamental for their future development.

The OECD average is 75\%.

PISA Science Survey?

(Programme for International Student Assessment)
In Tamil Nadu and Himachal Pradesh 16\% and 11\% of students are proficient in science ... to participate actively in life situations related to science and technology.

PISA Science Survey?

(Programme for International Student Assessment)

In Tamil Nadu and Himachal Pradesh 16\% and 11\% of students are proficient in science ... to participate actively in life situations related to science and technology.

The OECD average is 82%.

The English support the English cricket team

The English support the English cricket team

Indians support the Indian cricket team

The English support the English cricket team

Indians support the Indian cricket team

The English support English mathematicians

The English support the English cricket team

Indians support the Indian cricket team

The English support English mathematicians

Indians support English mathematicians!

Mathematical Foundations?

India used to lead the world when it followed its own maths.

Share of Global GDP Year 1-2003

 EIndia
 China
 -italy
 France
 Germany
 Japan
 UK
 USA

The hard work has been done!

 India can update its
maths and prosper

 or let this major maths education advantage pass by.
Thank you India for your gift of zero. It got lost, so I have returned it to you.

If you care, please share!
 Thank you.

PART 2. Negative \& Positive Quantities on a Brahmaguptan Plane for India's Primary Classes

Jonathan J. Crabtree, Elementary Mathematics Historian, Australia. 9th National conference: Technology \& Innovations in Math Education Biennial Conference of the Mathematics Department of the IIT Bombay. Jointly organized by IISER, Pune \& BATU, Lonere.

Pune India, 27th December 2019
"There are no studies demonstrating how negative numbers and algebra can be taught to such students in a meaningful way:"
"There are no studies demonstrating how negative numbers and algebra can be taught to such students in a meaningfiul way:"

Mathematics Education in India Status and Outlook Edited by R. Ramanujam and K. Subramaniam Homi Bhabha Centre for Science Education
Tata Institute of Fundamental Research

"Negative numbers, usually introduced early in class 6, are known to be a problem area."

Mathematics Education in India Status and Outlook Edited by R. Ramanujam and K. Subramaniam Homi Bhabha Centre for Science Education
Tata Institute of Fundamental Research

"Negative times negative is positive is problematic to justifiy."

A quote I jotted down from Dr. Shailesh Shirali this morning, 27 December.

"Negative tines negative is positive is problematic to justity y

Now, Brahmagupta's simple idea of zero lets India's children understand $-1 \times-1=+1$ with absolute rock-solid certainty and intuitive conviction!
"Something is amiss, Why are we adrift? What should be done? We need to gain insight from history."

Some quotes I jotted down from Professor Dinesh Singh's inaugural TIME2019 address 26 December.
sWe must offier something tangible to policy holders. Sanskrit is in our DNA, but we never bring it into the learning of mathematicst

Some quotes I jotted down from Professor Dinesh Singh's inaugural TIME2019 address 26 December.
sive musti ofiter something tangible to policy holders. Sanstirit is in ouri DNA, but we never bring fit into the learning of mathematics"

My goal is to answer questions like these and to give India's leaders and teachers the solutions children need.
${ }^{31}$ WVe must offier something tangible to policy holders. Sanskrit is in our DNA, but we never bring it into the learning of mathematics"

To solve India's primary-level mathematics education problems, I am creating a free 'Sanskrit-based' alternative to Arithmetic called Podometic ${ }^{T M}$.

splease forget everything you learned in school, because you have not learned it."

Edmund Landau, Foundations of Analysis

Please forget much about what you learned in school about arithmetic, because you don't understand my definition of zero.

What Brahmagupta might say if he were alive today.

"Brahmagupta... defined zero as the result of subtraction of a number from itself."
"He also gave the following rules for operations on what he called 'fortunes' (positive numbers) and 'debts' (negative numbers)."
"The product... of two debts is one fortune."

"Brahmagupta (598-670 CE) was a Hindu mathematician and astronomer who lived in the first century."
 "He used negative integers to represent debts and positive integers to represent assets."

"The product ... of two debts is one fortune."

Brahmagupta

"The product of a positive and a negative (number) is negative; of two negatives is positive; positive multiplied by 'positive is positive."

Mahāvīra

"In the multiplication of two negative or two positive numbers the result is positive; but it is negative in the case of (the multiplication of) a positive and a negative number."

Śripati

"On multiplying two negative or two positive numbers (the product is) positive; in the multiplication of positive and negative (the result is) negative."

Bhāskara II

"The product of two positive or two negative (numbers) is positive; the product of positive and negative is negative." The same rule is stated by Nārāyaṇa. and Bidyāraṇya Avadesh Narayan Singh, pp. 22-23, Motilal Banarsidass, Lahore, 1938.

In 263 CE，Liu Hui wrote a commentary on the ancient
The Nine Chapters on the Mathematical Art （九章算术 Jiŭzhāng Suànshù circa 100 CE ）．

In 263 CE，Liu Hui wrote a commentary on the ancient The Nine Chapters on the Mathematical Art （九章算术 Jiǔzhāng Suànshù circa 100 CE ）．

Liu Hui said：
I read the Nine Chapters as a boy，and studied it in full detail when I was older．I observed the division between the dual natures of Yin and Yang［the negative and positive aspects］which sum up the fundamentals of mathematics．

In 263 CE，Liu Hui wrote a commentary on the ancient The Nine Chapters on the Mathematical Art （九章算术 Jiǔzhāng Suànshù circa 100 CE ）．

Liu Hui said：
I read the Nine Chapters as a boy，and studied it in full detail when I was older．I observed the division between the dual natures of Yin and Yang［the negative and positive aspects］which sum up the fundamentals of mathematics．

The Nine Chapters on the Mathematical Art：Companion and Commentary，
Shen Kangshen，John N．Crossley and Anthony W．C．Lun，Oxford University Press， 2000.

If Maths is Language,

 it must obey the 'Parts of Speech' of language.
The Grammar of Arithmetic

Negative Seven

 MinusNegative Four?

Most adults answer
 "Negative Eleven?"

Most adults answer
 "Negative Eleven?"

> Why?

Adjective Adjective Negative Seven Minus Adjective in Adjective

Adjective Adjective Negative Seven Minus Adjective in Adjective No Nouns!

Adjective Adjective Negative $\underset{\text { Verb }}{ }$ Seven Minus Adjective Adjective?

Adults struggle for rules memorized without meaning 'is it two negatives make a plus?'

Seven Negatives Minus

Four Negatives?

Every child answers

"Three Negatives!"

Every child answers

"Three Negatives!"
Why?

Adjective Nouns

Seven NV, Nerbatives Minus Adjective Nouns Four Negatives?

Adjective Nouns
Seven Negatives Minus Adjective Nouns Four Negatives?
Nouns Make Maths Meaningful!
© 2019 J. J. Crabtree | All Rights Reserved www.jonathancrabtree.com

Addition

Adjective	Noun(s)	Verb	Adjective	Noun(s)		Adjective	Noun(s)
5	()	+	4	\bigcirc	=	9	()
Augend	Units	Add	Addend	Units		Sum	Units

www.j.mp/IndiasMaths

Multiplication

Adjective	Noun(s)	Verb	Adverb		Adjective	Noun(s)
2	())	\times	3	=	6	-)
Multiplicand	Units	Multiply	Multiplier		Product	Units

www.j.mp/IndiasMaths

Why the product of two negatives is positive

A demonstration goes like this...

	$1+(-1)=0$	Definition of -1.
	$-1 \times[1+(-1)]=-1 \times 0$	Both sides multiplied by -1 .
	$(-1) \times 1+(-1) \times(-1)=0$	Distributive law
	$(-1)+(-1) \times(-1)=0$	Multiplicative identity
	$1+[(-1)+(-1) \times(-1)]=1+0$	Add both sides to 1.
	$[1+(-1)]+(-1) \times(-1)=1+0$	Associative law
	$0+(-1) \times(-1)=1+0$	Definition of -1
	$(-1) \times(-1)=1$	Additive identity

Brahmagupta defined zero

 as the sum of a positive number and negative number of equal magnitude, सम-ऐक्यम् खम् (Brāhma Sphuta-siddhānta, Chapter 18:30a).So zero was defined in India as:

$$
+n+-n
$$

P. 1 अ्रय धनर्याशून्यानां सङ़लनम् ।

2 घनयेाधंनमृणमृपये-
3 धर्णर्णयेरन्तरं समैक्यं खम्।
4 ऊएमैक्यं च धनमृषध-
5 नशून्ययेः शून्ययोः शून्यम् ॥३०॥ (३?)
धनये।रैक्यं धनमृखये।रैक्यमृयां भवर्ति। धनर्योयेरत्तरमेवैक्यं भबति। समयोर्धेन रायेतरेंक्ं खं शून्यं भर्वति। चलशून्यये।रैक्यमृएां अनशून्यये T क्ं जनं शून्ययेरेक्यं च शून्यं भर्वर्व ।

चच्चेपपन्यथे मन्मुक्रिता भास्करबीजटिप्पयी द्रष्टव्या ॥ ३० ॥
ददानों ब्यवकलनमाह।
ऊनमधिकाद्विशेर्यं घनं धनाहएमृपाद्यिकमूनात्।
उपस्तं तदन्तरं स्याहएँं धनं धनमृएं भवति॥ ३ १॥ (३२) शून्यविहीनमृएमृएं धनं धनं भवति शून्यमाकाशम् । शेंधंयं यदा घनमृपाद्टएं धनादा तदा चेप्यम्॥ ३२॥ (३३)

चचिकाद्धनादूनं धनं विशोाधं चेषं घनं भर्वति। चधिकादृ यादून15 16 नमृयं विशेाधं शेषमृयं भर्बतत। ऊनाद्यनादषिकं धनं बेानादृ खादधिक17 मृयां विशेाधं तदा तदन्तरं व्यस्तं विपरीतं स्यात्। ज्रण्थाधिधं धनं वि18 शेเधं तदा थेपमृणां मर्वति। खजिकमृरां विशेधधं तदा चेषं धनं भव19 ति। कथं विपरीतं भवतीत्याह्ट। छएँां धनं भर्वात धनं चएँँ भबतीति। 20 चेदृषं शून्यविहीनं शून्येन बिहीनं तदा चर्यं धनं च शूर्य्यविहीनं धनं शून्यं 21 च शून्यधिहीनमाकाशं शून्यं भर्बति। यदि क्यादुनें शेधां वा धनादृखं 22 शेषें तबा चेप्यमर्थात् तदा तयेगयँग एवान्तरं भबतीति।
23
छघ्मजेपपपन्यचे मन्मुद्रिता मास्करबीजटिप्पयी विलेक्या॥ ३१-३२॥

24 धदानतं गुखने करणासूज्रम् ।
25 असमृणधनयेाघंतोत धनमृएयेग्धरनक्षे धनं अवति। 26 शून्यर्षयेः: खधनयोः खशून्ययेार्षा वघः शून्यम् ॥३३॥(३४)
 28 घनं भवति। शून्यर्यायो: खध्रनये: शून्यधनयेबो खशूम्बयेशश्च वष्ष: शून्यं 29 भर्वात ॥ ३ः
30 ददान̃ं भागहारे करणसूचं बृत्तद्वयम् ।
31 धनभकं धनमृए ट्टतम्टृं धनं भवति खं खभक्षं खम् ।
32 मक्तमृऐन धनमृएं धनेन हृतमृणमृएं भवति॥ ३४॥ (३У)
33 खोड्टृतम्टएं घनं बा तछछ्छेदं खमृपधनविभक्तं वा।
34 ऋघधनयोर्वर्गः स्वं खं खस्य पद्ं कृतिर्यत् तत्॥ ३श॥(३६)
35 धनं धनमतं वा एचं क्षामतं फलं धनं भवर्वतिं। खमनंतं खं

37 मृएां भर्aति । कर्या वा धनं खेनेद्धूतं तच्छेटें तस्य शून्यस्य छेदेा यर्मि-
38 चृषो वा घने तच्छेदं भर्वति । पवं सं शून्यमृयधनव्रिभह्巾ं (शून्यं) वा त-
39 छछेदं भर्वति। फलं शून्यं भर्वति वा शून्यं तदुरं स्पादित्यर्यं। च्याधन-
40 चेवेंगः स्वं भर्धति। खस्य वर्गः खं भर्वरत। तदेब वर्गस्य पदं भर्वति
41 यत्र्धतिः स एब बर्गा भबेर्दिति। भास्करबीज 5 पेतदेब सबंम् 1 च习्र

43 क्यम् ॥ ३8-३य ॥
44 ददानीं सङ्रमयाविषमकर्माह ।
45 योगोडन्तरयुतहीने दिद्धितः सझ्रमषमन्तरविमक्तं वा । 46 वर्गान्तरमन्तरयुतहीनं द्विट्टतं विषमकर्म ॥ ३६॥(३७)

48 तो राशी स्तः । दूं सड्र्रमखं नाम गरातम् 1 वा राशयेवेंगान्तरं राश्य-
49 न्तरेखा विभकं फलमन्तरेखा युतं हीनं द्वृहृतं च राशी स्तः । उदं विष-

Brahmagupta's 5 Addition Laws

 AL1 positive plus positive is positivenegative plus negative is negative
A13
positive plus negative is the difference between the positive and negative
when positive and negative are equal the sum is zero positive plus zero is positive
A5 negative plus zero is negative zero plus zero is zero

Brahmagupta's 4 Multiplication Laws

MLI
The product of a negative and a positive is negative.
H12 The product of two negatives is positive.
M13 The product of two positives is positive.
The product of zero and a negative,
140
of zero and a positive, or
of two zeros is zero.
© 2019 J. J. Crabtree | All Rights Reserved www.jonathancrabtree.com

Brahmagupta's 5 Subtraction Laws
A smaller positive subtracted from a larger positive is positive.
A smaller negative subtracted from a larger negative is negative.
If a larger negative or positive is to be subtracted from a smaller negative or positive, the sign of their difference is reversed negative becomes positive and positive negative.

A negative minus zero is negative,
a positive minus zero is positive,
zero minus zero is zero.
When a positive is to be subtracted from a negative
or a negative from a positive, then it is to be added.

Brahmagupta's 4 Division Laws

A positive divided by a positive is positive.
A negative divided by a negative is positive.

A positive divided by a negative is negative.

114
A negative divided by a positive is negative.

[^2]Seeing a simple Proof for Brahmagupta's ML2
The product of two 'dashed numbers' is positive.
Via Brahmagupta we multiply positives and negatives by either adding to zero multiple times or subtracting from zero multiple times.

Via Brahmagupta we multiply positives and negatives by either adding to zero multiple times or subtracting from zero multiple times.

$-a \times+b=$
 - a added to
 zero b times
 $-\boldsymbol{a} \times-\boldsymbol{b}=$
 -a subtracted from
 zero b times

Via Brahmagupta we multiply positives and negatives by either

 adding to zero multiple times or subtracting from zero multiple times.
$-a \times+b=\quad-a \times-b=$
 ${ }^{-}$a added to
 zero b times
 - a subtracted from
 zero b times

With integral multiplication...
a is the adjective describing counts or measures of noun quantities
b is the adverb describing verb counts of additions or subtractions

Seeing a Simple Proof for Brahmagupta's ML2
The product of two dashed numbers is positive.

$$
\begin{aligned}
& -a \times-b=-a \text { subtracted from zero } b \text { times } \\
& -1 \times-1=-1 \text { subtracted from zero } 1 \text { time }
\end{aligned}
$$

Seeing a Simple Proof for Brahmagupta's ML2
The product of two dashed numbers is positive.

$-a \times-b=-a$ subtracted from zero b times $-1 \times-1=-1$ subtracted from zero 1 time

$$
+1+-1 \bigcirc
$$

$1+(-1)=0$	Definition of -1.
$-1 \times[1+(-1)]=-1 \times 0$	Both sides multiplied by -1.
$(-1) \times 1+(-1) \times(-1)=0$	Distributive law
$(-1)+(-1) \times(-1)=0$	Multiplicative identity
$1+[(-1)+(-1) \times(-1)]=1+0$	Add both sides to 1.
$[1+(-1)]+(-1) \times(-1)=1+0$	Associative law
$0+(-1) \times(-1)=1+0$	Definition of -1
$(-1) \times(-1)=1$	Additive identity

Seeing a Simple Proof for Brahmagupta's ML2
The product of two dashed numbers is positive.

$-a \times-b=-a$ subtracted from zero b times $-1 \times-1=-1$ subtracted from zero 1 time

$-1 \times-1=+1$

$+$

$1+(-1)=0$	Definition of -1.
$-1 \times[1+(-1)]=-1 \times 0$	Both sides multiplied by -1.
$(-1) \times 1+(-1) \times(-1)=0$	Distributive law
$(-1)+(-1) \times(-1)=0$	Multiplicative identity
$1+[(-1)+(-1) \times(-1)]=1+0$	Add both sides to 1.
$[1+(-1)]+(-1) \times(-1)=1+0$	Associative law
$0+(-1) \times(-1)=1+0$	Definition of -1
$(-1) \times(-1)=1$	Additive identity

My Sanskrit-Based Demonstration
i.e. -1 subtracted 1 time from $0=+1$

Seeing a Simple Proof for Brahmagupta's ML2
The product of two dashed numbers is positive.

$-a \times-b=-a$ subtracted from zero b times
 $-1 \times-1=-1$ subtracted from zero 1 time

$-1 \times-1={ }^{+} 1$

$+$

My Western
i.e. -1 subtracted 1 time from $0=+1$

Demonstration

With our corrected understandling of Integer

 arithmetic, we can now depict it on a Brahmaguptan Plane.

Download the Paper from www.j.mp/BrahmaguptanPlane
© 2019 J. J. Crabtree | All Rights Reserved
www.jonathancrabtree.com
Q. II
${ }^{-} \boldsymbol{a} \times+\boldsymbol{n}=$ Negative Product
i.e. a debt added n times
to zero.
$0+{ }^{-} a+{ }^{-} a+\ldots$
n times added to 0 multiplier

$+n$

> Q. I
${ }^{+} \boldsymbol{a} \times+\boldsymbol{n}=$ Positive Product i.e. a fortune added n times to zero. $\quad 0+{ }^{+} a+^{+} a+\ldots$

$$
0+{ }^{+} a+{ }^{+} a+\ldots
$$

multiplicand
e.g. debt
multiplicand
e.g. fortune

${ }^{-} \boldsymbol{a} \times-\boldsymbol{n}=$ Positive Product i.e. a debt subtracted n times from zero. $0-{ }^{-} a-{ }^{-} a+\ldots$
${ }^{+} \boldsymbol{a} \times-\boldsymbol{n}=$ Negative Product
i.e. a fortune subtracted n times
from zero.

$$
0-{ }^{+} a-{ }^{+} a+\ldots
$$

© 2019 J. J. Crabtree | All Rights Reserved
www.jonathancrabtree.com
Q. III
multiplier
n times subtracted from 0

1 Unit of Positive

The Brahmaguptan Plane with both positive and negative areas.

10 negatives added
5 times $=50$ negatives
$-10 \times+5=-50$

$$
6 \text { times }=18 \text { positives }
$$

Jonathan J Crabtree's ‘Brahmaguptan Plane' with positive and negative areas.
Addition of Integers to Zero

Representations of Negative and Positive Quantities on a 'Brahmaguptan Plane' for India's Primary Classes

Jonathan J Crabtree

www.j.mp/BrahmaguptanPlane

Abstract

Children's fear of maths is often associated with the introduction of negative numbers. By way of example, asking adult non-mathematicians for the answer to 'negative seven minus negative four' usually results in a wrong answer. However, asking the same question to 12-year-old children in the form What does seven negatives minus four negatives equal? usually results in the right answer. Why is the difference in comprehension so dramatic? In the problematic expression negative seven minus negative four the syntactic structure is adjective adjective verb adjective adjective. With the absence of a noun, the meaning of such maths for most children is lost. Instead, children (and adults) cling to rules memorised without meaning, such as 'two minuses make a plus'. So, what can we do? The answer is simple. We return to $7^{\text {th }}$ Century writings of India, where we discover the astronomer Brahmagupta documented 'adjective-noun' style laws of sign, not for abstract numbers, but for positive quantities, negative quantities and zero. With this insight, we depict simple object-oriented representations of integer arithmetic involving positive and negative quantities. Such a quantitative pedagogy is concrete in nature, yet isomorphic to 'signed numbers.' Therefore, a solid intuitive foundation of integer arithmetic can be laid. Upon this foundation more abstract structures can be built. The integer teaching model that emerges is called the 'Brahmaguptan Plane'.

Please email me your feedloack research@jonathancrabtree.com

Jonathan J. Crabtree

Elementary Mathematics Historian, Melbourne, Australia research@jonathancrabtree.com
© 2019 Jonathan J. Crabtree

[^0]: School students celebrate after checking their CBSE results. A global survey has found that the average 15-yea... Read More

[^1]: Acknowledgement: I am grateful to Avinash Sathaye, K. Ramasubramanian, Clemency Montelle Kim Plofker and Agathe Keller. Analysis, interpretation (\& any mistakes) by Jonathan J. Crabtree.

[^2]: Acknowledgement: I am grateful to Avinash Sathaye, K. Ramasubramanian, Clemency Montelle, Kim Plofker and Agathe Keller. Analysis, interpretation (\& any mistakes) by Jonathan J. Crabtree

